
1

UNIT- I

Software and Software Engineering

Software engineering stands for the term is made of two words, Software and

Engineering.

Software is more than just a program code. A program is an executable code, which serves some

computational purpose. Software is considered to be collection of executable programming code,

associated libraries and documentations. Software, when made for a specific requirement is

called software product.

Engineering on the other hand, is all about developing products, using well-defined, scientific

principles and methods.

Software engineering is an engineering branch associated with development of software

product using well-defined scientific principles, methods and procedures. The outcome of

software engineering is an efficient and reliable software product.

Definitions

IEEE defines software engineering as:

(1) The application of a systematic, disciplined, quantifiable approach to the development,

operation and maintenance of software; that is, the application of engineering to software.

(2) The study of approaches as in the above statement.

Fritz Bauer, a German computer scientist, defines software engineering as:

Software engineering is the establishment and use of sound engineering principles in order to

obtain economically software that is reliable and work efficiently on real machines.

Software and Software Engineering: The Nature of Software, The Unique Nature of

WebApps, Software Engineering, The Software Process, Software Engineering Practice,

Software Myths

Process Models: A Generic Process Model, Process Assessment and Improvement,

Prescriptive Process Models, Specialized Process Models, The Unified Process, Personal

and Team Process Models, Process Technology, Product and Process.

2

The Nature of Software

Software takes Dual role of Software. It is a Product and at the same time a Vehicle for

delivering a product.

Software delivers the most important product of our time is called information

Defining Software

Software is defined as

1. Instructions : Programs that when executed provide desired function, features,

and performance

2. Data structures : Enable the programs to adequately manipulate information

3. Documents: Descriptive information in both hard copy and virtual forms that

describes the operation and use of the programs.

Characteristics of software

Software has characteristics that are considerably different than those of hardware:

1) Software is developed or engineered, it is not manufactured in the Classical Sense.

Although some similarities exist between software development and hardware

manufacture, the two activities are fundamentally different. In both the activities, high quality is

achieved through good design, but the manufacturing phase for hardware can introduce quality

problems that are nonexistent or easily corrected for software. Both the activities are dependent

on people, but the relationship between people is totally varying. These two activities require the

construction of a "product" but the approaches are different. Software costs are concentrated in

engineering which means that software projects cannot be managed as if they were

manufacturing.

2) Software doesn’t “Wear Out”

The following figure shows the relationship between failure rate and time. Consider the

failure rate as a function of time for hardware. The relationship is called the bathtub curve,

indicates that hardware exhibits relatively high failure rates early in its life, defects are corrected

and the failure rate drops to a steady-state level for some period of time. As time passes,

however, the failure rate rises again as hardware components suffer from the cumulative effects

of dust, vibration, abuse, temperature extremes, and many other environmental maladies. So,

3

stated simply, the hardware begins to wear out. Software is not susceptible to the environmental

maladies that cause hardware to wear out

3) Although the industry is moving toward component-based construction, most software

continues to be custom built

A software component should be designed and implemented so that it can be reused in

many different programs. Modern reusable components encapsulate both data and the processing

that is applied to the data, enabling the software engineer to create new applications from

reusable parts

4

Software Application Domains

Seven Broad Categories of software are challenges for software engineers

System software : A collection of programs written to service other programs. Some system

software (e.g., compilers, editors, and file management utilities)

Application software : Stand-alone programs that solve a specific business need. Application

software is used to control business functions in real time (e.g., point-of-sale transaction

processing, real-time manufacturing process control).

Engineering/scientific software : It has been characterized by “number crunching” algorithms.

Applications range from astronomy to volcanology, from automotive stress analysis to space

shuttle orbital dynamics, and from molecular biology to automated manufacturing.

Embedded software : It resides within a product or system and is used to implement and control

features and functions for the end user and for the system itself. Embedded software can perform

limited and esoteric functions (e.g., key pad control for a microwave oven) or provide significant

function and control capability (e.g., digital functions in an automobile such as fuel control,

dashboard displays, and braking systems).

Product-line software : Designed to provide a specific capability for use by many different

customers. Product-line software can focus on a limited and esoteric marketplace (e.g., inventory

control products) or address mass consumer markets (e.g., word processing, spreadsheets,

computer graphics, multimedia, entertainment, database management, and personal and business

financial applications).

Web applications : These Applications called “WebApps,” this network-centric software

category spans a wide array of applications. In their simplest form, WebApps can be little more

than a set of linked hypertext files that present information using text and limited graphics.

.Artificial intelligence software : These makes use of non numerical algorithms to solve

complex problems that are not amenable to computation or straightforward analysis.

Applications within this area include robotics, expert systems, pattern recognition (image and

voice), artificial neural networks, theorem proving, and game playing.

5

New Software Challenges
 Open-world computing : Creating software to allow machines of all sizes to

communicate with each other across vast networks (Distributed computing—wireless

networks)

 Netsourcing : Architecting simple and sophisticated applications that benefit targeted

end-user markets worldwide (the Web as a computing engine)

 Open Source : Distributing source code for computing applications so customers can

make local modifications easily and reliably (“free” source code open to the computing

community)

Legacy Software

• Legacy software is older programs that are developed decades ago.

• The quality of legacy software is poor because it has inextensible design, convoluted

code, poor and nonexistent documentation, test cases and results that are not achieved.

As time passes legacy systems evolve due to following reasons:

• The software must be adapted to meet the needs of new computing environment or

technology.

• The software must be enhanced to implement new business requirements.

• The software must be extended to make it interoperable with more modern systems or

database

• The software must be re-architected to make it viable within a network environment.

Unique Nature of Web Apps

In the early days of the World Wide Web, websites consisted of little more than a set of

linked hypertext files that presented information using text and limited graphics. As time passed,

the augmentation of HTML by development tools (e.g., XML, Java) enabled Web engineers to

provide computing capability along with informational content. Web-based systems and

applications (WebApps) were born. Today, WebApps have evolved into sophisticated computing

tools that not only provide stand-alone function to the end user, but also have been integrated

with corporate databases and business applications.

6

WebApps are one of a number of distinct software categories. Web-based systems and

applications “involve a mixture between print publishing and software development, between

marketing and computing, between internal communications and external relations, and between

art and technology.”

The following attributes are encountered in the vast majority of WebApps.

 Network intensiveness. A WebApp resides on a network and must serve the needs of a

diverse community of clients. The network may enable worldwide access and

communication (i.e., the Internet) or more limited access and communication (e.g., a

corporate Intranet).

 Concurrency. A large number of users may access the WebApp at one time. In many

cases, the patterns of usage among end users will vary greatly.

 Unpredictable load. The number of users of the WebApp may vary by orders of

magnitude from day to day. One hundred users may show up on Monday; 10,000 may

use the system on Thursday.

 Performance. If a WebApp user must wait too long, he or she may decide to go

elsewhere.

 Availability. Although expectation of 100 percent availability is un reasonable, users of

popular WebApps often demand access on a 24/7/365 basis

 Data driven. The primary function of many WebApps is to use hypermedia to present

text, graphics, audio, and video content to the end user. In addition, WebApps are

commonly used to access information that exists on databases that are not an integral part

of the Web-based environment (e.g., e-commerce or financial applications).

 Content sensitive. The quality and aesthetic nature of content remains an important

determinant of the quality of a WebApp.

 Continuous evolution. Unlike conventional application software that evolves over a

series of planned, chronologically spaced releases, Web applications evolve continuously.

 Immediacy. Although immediacy—the compelling need to get software to market

quickly—is a characteristic of many application domains, WebApps often exhibit a time-

to-market that can be a matter of a few days or weeks.

7

 Security. Because WebApps are available via network access, it is difficult, if not

impossible, to limit the population of end users who may access the application. In order

to protect sensitive content and provide secure modes

 Aesthetics. An undeniable part of the appeal of a WebApp is its look and feel. When an

application has been designed to market or sell products or ideas, aesthetics may have as

much to do with success as technical design.

Software Engineering - A Layered Technology

In order to build software that is ready to meet the challenges of the twenty-first century,

you must recognize a few simple realities

 Problem should be understood before software solution is developed

 Design is a pivotal Software Engineering activity

 Software should exhibit high quality

 Software should be maintainable

These simple realities lead to one conclusion. Software in all of its forms and across all of

its application domains should be engineered.

Software Engineering :

Fritz Bauer defined as:

Software engineering is the establishment and use of sound engineering principles in order to

obtain economically software that is reliable and works efficiently on real machines.

IEEE has developed a more comprehensive definition as :

1) Software engineering is the application of a systematic, disciplined, quantifiable

approach to the development, operation, and maintenance of software.

2) The study approaches as in (1)

Software Engineering is a layered technology. Software Engineering encompasses a

Process, Methods for managing and engineering software and tools.

The following Figure represents Software engineering Layers

8

Software engineering is a layered technology. Referring to above Figure, any engineering

approach must rest on an organizational commitment to quality.

The bedrock that supports software engineering is a quality focus.

The foundation for software engineering is the process layer. The software engineering

process is the glue that holds the technology layers together and enables rational and timely

development of computer software. Process defines a framework that must be established for

effective delivery of software engineering technology.

Software engineering methods provide the technical how-to’s for building software.

Methods encompass a broad array of tasks that include communication, requirements analysis,

design modeling, program construction, testing, and support.

Software engineering tools provide automated or semi automated support for the

process and the methods. When tools are integrated so that information created by one tool can

be used by another, a system for the support of software development, called computer-aided

software engineering, is established.

The Software Process

A process is a collection of activities, actions, and tasks that are performed when some

work product is to be created.

An activity strives to achieve a broad objective (e.g., communication with stakeholders)

and is applied regardless of the application domain, size of the project, complexity of the effort,

or degree of rigor with which software engineering is to be applied.

An action encompasses a set of tasks that produce a major work product (e.g., an

architectural design model).

9

A task focuses on a small, but well-defined objective (e.g., conducting a unit test) that

produces a tangible outcome.

A process framework establishes the foundation for a complete software engineering

process by identifying a small number of framework activities that are applicable to all software

projects, regardless of their size or complexity. In addition, the process framework encompasses

a set of umbrella activities that are applicable across the entire software process.

A generic process framework for software engineering encompasses five activities:

 Communication. Before any technical work can commence, it is critically important to

communicate and collaborate with the customer. The intent is to understand stakeholders

objectives for the project and to gather requirements that help define software features

and functions.

 Planning. Any complicated journey can be simplified if a map exists. A software project

is a complicated journey, and the planning activity creates a “map” that helps guide the

team as it makes the journey. The map—called a software project plan—defines the

software engineering work by describing the technical tasks to be conducted, the risks

that are likely, the resources that will be required, the work products to be produced, and

a work schedule.

 Modeling. Creation of models to help developers and customers understand the requires

and software design

 Construction. This activity combines code generation and the testing that is required to

uncover errors in the code.

 Deployment. The software is delivered to the customer who evaluates the delivered

product and provides feedback based on the evaluation.

These five generic framework activities can be used during the development of small, simple

programs, the creation of large Web applications, and for the engineering of large, complex

computer-based systems.

Software engineering process framework activities are complemented by a number of

Umbrella Activities. In general, umbrella activities are applied throughout a software project

and help a software team manage and control progress, quality, change, and risk. Typical

umbrella activities include:

10

 Software project tracking and control—allows the software team to assess progress

against the project plan and take any necessary action to maintain the schedule.

 Risk management—assesses risks that may affect the outcome of the project or the

quality of the product.

 Software quality assurance—defines and conducts the activities required to ensure

software quality.

 Technical reviews—assesses software engineering work products in an effort to uncover

and remove errors before they are propagated to the next activity.

 Measurement—defines and collects process, project, and product measures that assist

the team in delivering software that meets stakeholders needs; can be used in conjunction

with all other framework and umbrella activities.

 Software configuration management—manages the effects of change throughout the

software process.

 Reusability management—defines criteria for work product reuse and establishes

mechanisms to achieve reusable components.

 Work product preparation and production—encompasses the activities required to

create work products such as models, documents, logs, forms, and lists.

Attributes for Comparing Process Models

 Overall flow and level of interdependencies among tasks

 Degree to which work tasks are defined within each framework activity

 Degree to which work products are identified and required

 Manner in which quality assurance activities are applied

 Manner in which project tracking and control activities are applied

 Overall degree of detail and rigor of process description

 Degree to which stakeholders are involved in the project

 Level of autonomy given to project team

 Degree to which team organization and roles are prescribed

The Software Engineering Practice
The Essence of Practice

 Understand the problem (communication and analysis)

 Plan a solution (software design)

 Carry out the plan (code generation)

 Examine the result for accuracy (testing and quality assurance)

11

Understand the Problem

 Who are the stakeholders?

 What functions and features are required to solve the problem?

 Is it possible to create smaller problems that are easier to understand?

 Can a graphic analysis model be created?

Plan the Solution

 Have you seen similar problems before?

 Has a similar problem been solved?

 Can readily solvable sub problems be defined?

 Can a design model be created?

Carry Out the Plan

 Does solution conform to the plan?

 Is each solution component provably correct?

Examine the Result

 Is it possible to test each component part of the solution?

 Does the solution produce results that conform to the data, functions, and features

required?

 Software General Principles
The dictionary defines the word principle as “an important underlying law or assumption

required in a system of thought.”

David Hooker has Proposed seven principles that focus on software Engineering practice.

The First Principle: The Reason It All Exists

A software system exists for one reason: to provide value to its users.

The Second Principle: KISS (Keep It Simple, Stupid!)

Software design is not a haphazard process. There are many factors to consider in any

design effort. All design should be as simple as possible, but no simpler.

The Third Principle: Maintain the Vision

A clear vision is essential to the success of a software project. Without one, a project almost

unfailingly ends up being “of two [or more] minds” about itself.

The Fourth Principle: What You Produce, Others Will Consume

12

Always specify, design, and implement knowing someone else will have to understand what you

are doing.

The Fifth Principle: Be Open to the Future

A system with a long lifetime has more value. Never design yourself into a corner. Before

beginning a software project, be sure the software has a business purpose and that users

perceive value in it.

The Sixth Principle: Plan Ahead for Reuse

Reuse saves time and effort. Planning ahead for reuse reduces the cost and increases the value

of both the reusable components and the systems into which they are incorporated.

The Seventh principle: Think!

Placing clear, complete thought before action almost always produces better results. When you

think about something, you are more likely to do it right.

Software Myths

Software Myths- beliefs about software and the process used to build it - can be traced to

the earliest days of computing. Myths have a number of attributes that have made them

insidious. For instance, myths appear to be reasonable statements of fact, they have an

intuitive feel, and they are often promulgated by experienced practitioners who “know

the score”

Management Myths :

Managers with software responsibility, like managers in most disciplines, are often under

pressure to maintain budgets, keep schedules from slipping, and improve quality. Like a

drowning person who grasps at a straw, a software manager often grasps at belief in a software

myth.

Myth : We already have a book that’s full of standards and procedures for building software.

Won’t that provide my people with everything they need to know?

Reality :

• The book of standards may very well exist, but is it used?

• Are software practitioners aware of its existence?

• Does it reflect modern software engineering practice?

• Is it complete?

• Is it adaptable?

13

• Is it streamlined to improve time to delivery while still maintaining a focus on Quality?

In many cases, the answer to these entire question is NO.

Myth : If we get behind schedule, we can add more programmers and catch up

Reality : Software development is not a mechanistic process like manufacturing. “Adding

people to a late software project makes it later.” At first, this statement may seem

counterintuitive. However, as new people are added, people who were working must spend time

educating the newcomers, thereby reducing the amount of time spent on productive development

effort

Myth : If we decide to outsource the software project to a third party, I can just relax and let

that firm build it.

Reality : If an organization does not understand how to manage and control software project

internally, it will invariably struggle when it out sources software project.

Customer Myths

A customer who requests computer software may be a person at the next desk, a technical

group down the hall, the marketing /sales department, or an outside company that has requested

software under contract. In many cases, the customer believes myths about software because

software managers and practitioners do little to correct misinformation. Myths led to false

expectations and ultimately, dissatisfaction with the developers.

Myth : A general statement of objectives is sufficient to begin writing programs - we can fill in

details later.

Reality : Although a comprehensive and stable statement of requirements is not always possible,

an ambiguous statement of objectives is a recipe for disaster. Unambiguous requirements are

developed only through effective and continuous communication between customer and

developer.

Myth : Project requirements continually change, but change can be easily accommodated

because software is flexible.

Reality : It’s true that software requirement change, but the impact of change varies with the

time at which it is introduced. When requirement changes are requested early, cost impact is

relatively small. However, as time passes, cost impact grows rapidly – resources have been

committed, a design framework has been established, and change can cause upheaval that

requires additional resources and major design modification.

14

Practitioner's myths.

Myths that are still believed by software practitioners have been fostered by 50 years of

programming culture. During the early days of software, programming was viewed as an art

form. Old ways and attitudes die hard.

Myth: Once we write the program and get it to work, our job is done.

Reality: Someone once said that "the sooner you begin 'writing code', the longer it'll take you to

get done.” Industry data indicate that between 60 and 80 percent of all effort expended on

software will be expended after it is delivered to the customer for the first time.

Myth: Until I get the program "running" I have no way of assessing its quality.

Reality: One of the most effective software quality assurance mechanisms can be applied from

the inception of a project—the formal technical review. Software reviews are a "quality filter"

that have been found to be more effective than testing for finding certain classes of software

defects.

Myth: The only deliverable work product for a successful project is the working program.

Reality: A working program is only one part of a software configuration that includes many

elements. Documentation provides a foundation for successful engineering and, more important,

guidance for software support.

Myth: Software engineering will make us create voluminous and unnecessary documentation

and will invariably slow us down.

Reality: Software engineering is not about creating documents. It is about creating quality. Better

quality leads to reduced rework. And reduced rework results in faster delivery times. Many

software professionals recognize the fallacy of the myths just described. Regrettably, habitual

attitudes and methods foster poor management and technical practices, even when reality dictates

a better approach. Recognition of software realities is the first step toward formulation of

practical solutions for software engineering.

15

PROCESS MODELS

A GENERIC PROCESS MODEL

The software process is represented schematically in following figure. Each framework

activity is populated by a set of software engineering actions. Each software engineering action

is defined by a task set that identifies the work tasks that are to be completed, the work products

that will be produced, the quality assurance points that will be required, and the milestones that

will be used to indicate progress.

A generic process framework defines five framework activities—communication,

planning, modeling, construction, and deployment.

16

In addition, a set of umbrella activities project tracking and control, risk management,

quality assurance, configuration management, technical reviews, and others are applied

throughout the process.

This aspect is called process flow. It describes how the framework activities and the

actions and tasks that occur within each framework activity are organized with respect to

sequence and time and is illustrated in following figure

A generic process framework for software engineering A linear process flow executes each of

the five framework activities in sequence, beginning with communication and culminating with

deployment.

17

An iterative process flow repeats one or more of the activities before proceeding to the next. An

evolutionary process flow executes the activities in a “circular” manner. Each circuit through the

five activities leads to a more complete version of the software. A parallel process flow executes

one or more activities in parallel with other activities (e.g., modeling for one aspect of the

software might be executed in parallel with construction of another aspect of the software).

Defining a Framework Activity

A software team would need significantly more information before it could properly execute any

one of these activities as part of the software process. Therefore, you are faced with a key

question: What actions are appropriate for a framework activity, given the nature of the problem

to be solved, the characteristics of the people doing the work, and the stakeholders who are

sponsoring the project?

Identifying a Task Set
Different projects demand different task sets. The software team chooses the task set

based on problem and project characteristics. A task set defines the actual work to be done to

accomplish the objectives of a software engineering action.

Process Patterns
A process pattern describes a process-related problem that is encountered during

software engineering work, identifies the environment in which the problem has been

encountered, and suggests one or more proven solutions to the problem. Stated in more general

terms, a process pattern provides you with a template —a consistent method for describing

problem solutions within the context of the software process.

Patterns can be defined at any level of abstraction. a pattern might be used to describe a

problem (and solution) associated with a complete process model (e.g., prototyping). In other

situations, patterns can be used to describe a problem (and solution) associated with a

framework activity (e.g., planning) or an action within a framework activity (e.g., project

estimating).

Ambler has proposed a template for describing a process pattern:

Pattern Name. The pattern is given a meaningful name describing it within the context of the

software process (e.g., TechnicalReviews).

Forces. The environment in which the pattern is encountered and the issues that make the

problem visible and may affect its solution.

18

Type. The pattern type is specified. Ambler suggests three types:

1. Stage pattern—defines a problem associated with a framework activity for the process.

Since a framework activity encompasses multiple actions and work tasks, a stage

pattern incorporates multiple task patterns (see the following) that are relevant to the

stage (framework activity). An example of a stage pattern might be Establishing

Communication. This pattern would incorporate the task pattern Requirements

Gathering and others.

2. Task pattern—defines a problem associated with a software engineering action or

work task and relevant to successful software engineering practice (e.g., Requirements

Gathering is a task pattern).

3. Phase pattern—define the sequence of framework activities that occurs within the

process, even when the overall flow of activities is iterative in nature. An example of a

phase pattern might be Spira lModel or Prototyping.

Initial context. Describes the conditions under which the pattern applies. Prior to the initiation

of the pattern:

(1) What organizational or team-related activities have already occurred?

(2) What is the entry state for the process?

(3) What software engineering information or project information already exists?

Problem. The specific problem to be solved by the pattern.

Solution. Describes how to implement the pattern successfully. It also describes how software

engineering information or project information that is available before the initiation of the

pattern is transformed as a consequence of the successful execution of the pattern.

Resulting Context. Describes the conditions that will result once the pattern has been

successfully implemented. Upon completion of the pattern:

(1) What organizational or team-related activities must have occurred?

(2) What is the exit state for the process?

(3) What software engineering information or project information has been developed?

Related Patterns. Provide a list of all process patterns that are directly related to this one. This

may be represented as a hierarchy or in some other diagrammatic form.

Known Uses and Examples. Indicate the specific instances in which the pattern is applicable.

19

Process patterns provide an effective mechanism for addressing problems associated with

any software process. The patterns enable you to develop a hierarchical process

description that begins at a high level of abstraction (a phase pattern).

PROCESS ASSESSMENT AND IMPROVEMENT

Assessment attempts to understand the current state of the software process with the

intent of improving it.

A number of different approaches to software process assessment and improvement have been

proposed over the past few decades.

Standard CMMI Assessment Method for Process Improvement (SCAMPI)—provides a five

step process assessment model that incorporates five phases: initiating, diagnosing,

establishing, acting, and learning. The SCAMPI method uses the SEI CMMI as the basis for

assessment.

CMM-Based Appraisal for Internal Process Improvement (CBA IPI)— provides a diagnostic

technique for assessing the relative maturity of a software organization; uses the SEI CMM as

the basis for the assessment.

SPICE (ISO/IEC15504)—a standard that defines a set of requirements for software process

assessment. The intent of the standard is to assist organizations in developing an objective

evaluation of the efficacy of any defined software process.

ISO 9001:2000 for Software—a generic standard that applies to any organization that wants to

improve the overall quality of the products, systems, or services that it provides. Therefore, the

standard is directly applicable to software organizations and companies.

Software Process

identifies

modifications to

by identifies capabilities

and risk of

Software Process

Improvement

leads to leads to

Capability

Determination

motivates

is examined

Software Process

Assessment

20

PRESCRIPTIVE PROCESS MODELS

Prescriptive process models were originally proposed to bring order to the chaos of

software development. Prescriptive process models define a prescribed set of process elements

and a predictable process work flow. “prescriptive” because they prescribe a set of process

elements—framework activities, software engineering actions, tasks, work products, quality

assurance, and change control mechanisms for each project.

The Waterfall Model
The waterfall model, sometimes called the classic life cycle, suggests a systematic,

sequential approach to software development that begins with customer specification of

requirements and progresses through planning, modeling, construction, and deployment.

A variation in the representation of the waterfall model is called the V-model. Represented in

following figure. The V-model depicts the relationship of quality assurance actions to the actions

associated with communication, modeling, and early construction activities.

21

As a software team moves down the left side of the V, basic problem requirements are

refined into progressively more detailed and technical representations of the problem and its

solution. Once code has been generated, the team moves up the right side of the V, essentially

performing a series of tests that validate each of the models created as the team moved down the

left side. The V-model provides a way of visualizing how verification and validation actions are

applied to earlier engineering work.

The waterfall model is the oldest paradigm for software engineering. The problems that

are sometimes encountered when the waterfall model is applied are:

1. Real projects rarely follow the sequential flow that the model proposes. Although the

linear model can accommodate iteration, it does so indirectly. As a result, changes

can cause confusion as the project team proceeds.

2. It is often difficult for the customer to state all requirements explicitly. The waterfall

model requires this and has difficulty accommodating the natural uncertainty that

exists at the beginning of many projects.

3. The customer must have patience. A working version of the program(s) will not be

available until late in the project time span.

This model is suitable when ever limited number of new development efforts and when

requirements are well defined and reasonably stable.

Incremental Process Models
The incremental model delivers a series of releases, called increments, that provide

progressively more functionality for the customer as each increment is delivered.

The incremental model combines elements of linear and parallel process flows discussed

in Section 1.7. The incremental model applies linear sequences in a staggered fashion as calendar

time progresses. Each linear sequence produces deliverable “increments” of the software in a

manner that is similar to the increments produced by an evolutionary process flow.

For example, word-processing software developed using the incremental paradigm might

deliver basic file management, editing, and document production functions in the first increment;

more sophisticated editing and document production capabilities in the second increment;

spelling and grammar checking in the third increment; and advanced page layout capability in

the fourth increment.

22

When an incremental model is used, the first increment is often a core product. That is, basic

requirements are addressed but many supplementary features remain undelivered. The core

product is used by the customer. As a result of use and/or evaluation, a plan is developed for the

next increment. The plan addresses the modification of the core product to better meet the needs

of the customer and the delivery of additional features and functionality. This process is repeated

following the delivery of each increment, until the complete product is produced.

Incremental development is particularly useful when staffing is unavailable for a

complete implementation by the business deadline that has been established for the project. Early

increments can be implemented with fewer people. If the core product is well received, then

additional staff (if required) can be added to implement the next increment. In addition,

increments can be planned to manage technical risks.

Fig : Incremental Model

23

Evolutionary Process Models
Evolutionary models are iterative. They are characterized in a manner that enables you to

develop increasingly more complete versions of the software with each iteration. There are two

common evolutionary process models.

Prototyping Model : Often, a customer defines a set of general objectives for software, but

does not identify detailed requirements for functions and features. In other cases, the developer

may be unsure of the efficiency of an algorithm, the adaptability of an operating system, or the

form that human-machine interaction should take. In these, and many other situations, a

prototyping paradigm may offer the best approach.

Although prototyping can be used as a stand-alone process model, it is more commonly

used as a technique that can be implemented within the context of any one of the process models.

The prototyping paradigm begins with communication. You meet with other stakeholders to

define the overall objectives for the software, identify whatever requirements are known, and

outline areas where further definition is mandatory. A prototyping iteration is planned quickly,

and modeling (in the form of a “quick design”) occurs. A quick design

focuses on a representation of those aspects of the software that will be visible to end users.

Fig : prototyping paradigm

The quick design leads to the construction of a prototype. The prototype is deployed

and evaluated by stakeholders, who provide feedback that is used to further refine requirements.

24

Iteration occurs as the prototype is tuned to satisfy the needs of various stakeholders, while at the

same time enabling you to better understand what needs to be done.

The prototype serves as a mechanism for identifying software requirements. If a working

prototype is to be built, you can make use of existing program fragments or apply tools that

enable working programs to be generated quickly. The prototype can serve as “the first system.”

Prototyping can be problematic for the following reasons:

1. Stakeholders see what appears to be a working version of the software, unaware that

the prototype is held together haphazardly, unaware that in the rush to get it working

you haven’t considered overall software quality or long-term maintainability.

2. As a software engineer, you often make implementation compromises in order to get

a prototype working quickly. An inappropriate operating system or programming

language may be used simply because it is available and known; an inefficient

algorithm may be implemented simply to demonstrate capability.

Although problems can occur, prototyping can be an effective paradigm for software

engineering.

The Spiral Model : Originally proposed by Barry Boehm, the spiral model is an

evolutionary software process model that couples the iterative nature of prototyping with the

controlled and systematic aspects of the waterfall model. It provides the potential for rapid

development of increasingly more complete versions of the software. Boehm describes the

model in the following manner

The spiral development model is a risk-driven process model generator that is used to

guide multi-stakeholder concurrent engineering of software intensive systems. It has two

main distinguishing features. One is a cyclic approach for incrementally growing a system’s

degree of definition and implementation while decreasing its degree of risk. The other is a set of

anchor point milestones for ensuring stakeholder commitment to feasible and mutually

satisfactory system solutions.

Using the spiral model, software is developed in a series of evolutionary releases. During

early iterations, the release might be a model or prototype. During later iterations, increasingly

more complete versions of the engineered system are produced.

25

Fig : The Spiral Model

A spiral model is divided into a set of framework activities defined by the software

engineering team. As this evolutionary process begins, the software team performs activities that

are implied by a circuit around the spiral in a clockwise direction, beginning at the center. Risk

is considered as each revolution is made. Anchor point milestones are a combination of work

products and conditions that are attained along the path of the spiral are noted for each

evolutionary pass.

The first circuit around the spiral might result in the development of a product

specification; subsequent passes around the spiral might be used to develop a prototype and then

progressively more sophisticated versions of the software. Each pass through the planning region

results in adjustments to the project plan.

The spiral model can be adapted to apply throughout the life of the computer software.

Therefore, the first circuit around the spiral might represent a “concept development project”

that starts at the core of the spiral and continues for multiple iterations until concept development

is complete. The new product will evolve through a number of iterations around the spiral. Later,

a circuit around the spiral might be used to represent a “product enhancement project.”

26

The spiral model is a realistic approach to the development of large-scale systems and

software. Because software evolves as the process progresses, the developer and customer better

understand and react to risks at each evolutionary level. It maintains the systematic stepwise

approach suggested by the classic life cycle but incorporates it into an iterative framework that

more realistically reflects the real world.

Concurrent Models
The concurrent development model, sometimes called concurrent engineering, allows a

software team to represent iterative and concurrent elements of any of the process models. The

concurrent model is often more appropriate for product engineering projects where different

engineering teams are involved.

These models provides a schematic representation of one software engineering activity

within the modeling activity using a concurrent modeling approach. The activity modeling may

be in any one of the states noted at any given time. Similarly, other activities, actions, or tasks

(e.g., communication or construction) can be represented in an analogous manner.

Fig : Concurrent development model

All software engineering activities exist concurrently but reside in different states.

Concurrent modeling defines a series of events that will trigger transitions from state to state for

27

each of the software engineering activities, actions, or tasks. This generates the event analysis

model correction, which will trigger the requirements analysis action from the done state into the

awaiting changes state.

Concurrent modeling is applicable to all types of software development and provides an

accurate picture of the current state of a project. Each activity, action, or task on the network

exists simultaneously with other activities, actions, or tasks. Events generated at one point in the

process network trigger transitions among the states.

SPECIALIZED PROCESS MODELS

Component-Based Development
The component-based development model incorporates many of the characteristics of the

spiral model. It is evolutionary in nature, demanding an iterative approach to the creation of

software. However, the component-based development model constructs applications from

prepackaged software components.

Modeling and construction activities begin with the identification of candidate

components. These components can be designed as either conventional software modules or

object-oriented classes or packages of classes. Regardless of the technology that is used to create

the components, the component-based development model incorporates the following steps

1. Available component-based products are researched and evaluated for the application

domain in question.

2. Component integration issues are considered.

3. A software architecture is designed to accommodate the components.

4. Components are integrated into the architecture.

5. Comprehensive testing is conducted to ensure proper functionality.

The component-based development model leads to software reuse, and reusability provides

software engineers with a number of measurable benefits.

The Formal Methods Model
The formal methods model encompasses a set of activities that leads to formal

mathematical specification of computer software. Formal methods enable you to specify,

develop, and verify a computer-based system by applying a rigorous, mathematical notation. A

variation on this approach, called clean room software engineering.

28

When formal methods are used during development, they provide a mechanism for

eliminating many of the problems that are difficult to overcome using other software engineering

paradigms. Ambiguity, incompleteness, and inconsistency can be discovered and corrected

more easily, but through the application of mathematical analysis.

When formal methods are used during design, they serve as a basis for program

verification and therefore enable you to discover and correct errors that might otherwise go

undetected. Although not a mainstream approach, the formal methods model offers the promise

of defect-free software.

Draw Backs:

• The development of formal models is currently quite time consuming and expensive.

• Because few software developers have the necessary background to apply formal

methods, extensive training is required.

• It is difficult to use the models as a communication mechanism for Technically

unsophisticated customers.

Aspect-Oriented Software Development
AOSD defines “aspects” that express customer concerns that cut across multiple system

functions, features, and information. When concerns cut across multiple system functions,

features, and information, they are often referred to as crosscutting concerns. Aspectual

requirements define those crosscutting concerns that have an impact across the software

architecture.

Aspect-oriented software development (AOSD), often referred to as aspect-oriented

programming (AOP), is a relatively new software engineering paradigm that provides a process

and methodological approach for defining, specifying, designing, and constructing aspects.”

Grundy provides further discussion of aspects in the context of what he calls aspect-

oriented component engineering (AOCE):

AOCE uses a concept of horizontal slices through vertically-decomposed software

components, called “aspects,” to characterize cross-cutting functional and non-functional

properties of components.

29

THE UNIFIED PROCESS

Unified process (UP) is an architecture-centric, use-case driven, iterative and incremental

development process. UP is also referred to as the unified software development process.

The Unified Process is an attempt to draw on the best features and characteristics of

traditional software process models, but characterize them in a way that implements many of the

best principles of agile software development. The Unified Process recognizes the importance

of customer communication and streamlined methods for describing the customer’s view of a

system. It emphasizes the important role of software architecture and “helps the architect focus

on the right goals, such as understandability, reliance to future changes, and reuse” . It suggests a

process flow that is iterative and incremental, providing the evolutionary feel that is essential in

modern software development.

A Brief History
During the early 1990s James Rumbaugh, Grady Booch, and Ivar Jacobson began working on a

“unified method” that would combine the best features of each of their individual object-oriented

analysis and design methods and adopt additional features proposed by other experts in object-

oriented modeling. The result was UML—a unified modeling language that contains a robust

notation for the modeling and development of object-oriented systems. They developed the

Unified Process, a framework for object-oriented software engineering using UML.

Phases of the Unified Process

This process divides the development process into five phases:

 Inception

 Elaboration

 Conception

 Transition

 Production

30

The inception phase of the UP encompasses both customer communication and planning

activities. By collaborating with stakeholders, business requirements for the software are

identified; a rough architecture for the system is proposed; and a plan for the iterative,

incremental nature of the ensuing project is developed.

The elaboration phase encompasses the communication and modeling activities of the

generic process model. Elaboration refines and expands the preliminary use cases that were

developed as part of the inception phase and expands the architectural representation to include

five different views of the software—the use case model, the requirements model, the design

model, the implementation model, and the deployment model. Elaboration creates an

“executable architectural baseline” that represents a “first cut” executable system.

The construction phase of the UP is identical to the construction activity defined for the

generic software process. Using the architectural model as input, the construction phase develops

or acquires the software components that will make each use case operational for end users. To

accomplish this, requirements and design models that were started during the elaboration phase

are completed to reflect the final version of the software increment. All necessary and required

features and functions for the software increment (i.e., the release) are then implemented in

source code.

31

The transition phase of the UP encompasses the latter stages of the generic construction

activity and the first part of the generic deployment (delivery and feedback) activity. Software is

given to end users for beta testing and user feedback reports both defects and necessary

changes. At the conclusion of the transition phase, the software increment becomes a usable

software release.

The production phase of the UP coincides with the deployment activity of the generic

process. During this phase, the ongoing use of the software is monitored, support for the

operating environment (infrastructure) is provided, and defect reports and requests for changes

are submitted and evaluated. It is likely that at the same time the construction, transition, and

production phases are being conducted, work may have already begun on the next software

increment. This means that the five UP phases do not occur in a sequence, but rather with

staggered concurrency.

PERSONAL AND TEAM PROCESS MODELS

The best software process is one that is close to the people who will be doing the work.

Watts Humphrey proposed two process models. Models - “Personal Software Process (PSP)”

and “Team Software Process (TSP).” Both require hard work, training, and coordination, but

both are achievable.

Personal Software Process (PSP)

The Personal Software Process (PSP) emphasizes personal measurement of both the

work product that is produced and the resultant quality of the work product. In addition PSP

makes the practitioner responsible for project planning and empowers the practitioner to control

the quality of all software work products that are developed. The PSP model defines five

framework activities:

 Planning. This activity isolates requirements and develops both size and resource

estimates. In addition, defects estimate (the number of defects projected for the work) is

made. All metrics are recorded on worksheets or templates. Finally, development tasks

are identified and a project schedule is created.

 High-level design. External specifications for each component to be constructed are

developed and a component design is created. Prototypes are built when uncertainty

exists. All issues are recorded and tracked.

32

 High-level design review. Formal verification methods are applied to uncover errors in

the design. Metrics are maintained for all important tasks and work results.

 Development. The component-level design is refined and reviewed. Code is generated,

reviewed, compiled, and tested. Metrics are maintained for all important tasks and work

results.

 Postmortem. Using the measures and metrics collected, the effectiveness of the process

is determined. Measures and metrics should provide guidance for modifying the process

to improve its effectiveness.

PSP stresses the need to identify errors early and, just as important, to understand the types

of errors that you are likely to make. PSP represents a disciplined, metrics-based approach to

software engineering that may lead to culture shock for many practitioners.

Team Software Process (TSP)

Watts Humphrey extended the lessons learned from the introduction of PSP and proposed

a Team Software Process (TSP). The goal of TSP is to build a “self directed” project team that

organizes itself to produce high-quality software.

Humphrey defines the following objectives for TSP:

 Build self-directed teams that plan and track their work, establish goals, and own their

processes and plans. These can be pure software teams or integrated product teams (IPTs)

of 3 to about 20 engineers.

 Show managers how to coach and motivate their teams and how to help them sustain

peak performance.

 Accelerate software process improvement by making CMM23 Level 5 behavior normal

and expected.

 Provide improvement guidance to high-maturity organizations.

 Facilitate university teaching of industrial-grade team skills.

A self-directed team has a consistent understanding of its overall goals and objectives; defines

roles and responsibilities for each team member; tracks quantitative project data (about

productivity and quality); identifies a team process that is appropriate for the project and a

strategy for implementing the process; defines local standards that are applicable to the team’s

software engineering work; continually assesses risk and reacts to it; and tracks, manages, and

reports project status.

33

TSP defines the following framework activities: project launch, high-level design,

implementation, integration and test, and postmortem. TSP makes use of a wide variety of

scripts, forms, and standards that serve to guide team members in their work. “Scripts” define

specific process activities (i.e., project launch, design, implementation, integration and system

testing, postmortem) and other more detailed work functions (e.g., development planning,

requirements development, software configuration management, unit test) that are part of the

team process.

PROCESS TECHNOLOGY

Process technology tools allow a software organization to build an automated model of

the process framework, task sets, and umbrella activities. The model, normally represented as a

network, can then be analyzed to determine typical workflow and examine alternative process

structures that might lead to reduced development time or cost.

Once an acceptable process has been created, other process technology tools can be used

to allocate, monitor, and even control all software engineering activities, actions, and tasks

defined as part of the process model. Each member of a software team can use such tools to

develop a checklist of work tasks to be performed, work products to be produced, and quality

assurance activities to be conducted. The process technology tool can also be used to coordinate

the use of other software engineering tools that are appropriate for a particular work task.

PRODUCT AND PROCESS

The Product is what we're actually building. What's our solution to the problem at hand? Half

of engineering is making sure you're building the right product and have the ability to actually

build it. For software engineers, that means coming up with a software solution and being able to

code it up properly.

The hidden side of engineering is the Process, which means how we're actually building

our product. Products don't just result from a single all-night coding session -- we need to make

sure we're following a process that lets us create that Product in the most efficient and effective

way possible.

34

	UNIT- I
	The Nature of Software
	Software is defined as
	Characteristics of software
	1) Software is developed or engineered, it is not manufactured in the Classical Sense.
	2) Software doesn’t “Wear Out”
	3) Although the industry is moving toward component-based construction, most software continues to be custom built
	New Software Challenges

	Unique Nature of Web Apps
	Software Engineering - A Layered Technology
	 Problem should be understood before software solution is developed
	Software Engineering :
	Software engineering is the establishment and use of sound engineering principles in order to obtain economically software that is reliable and works efficiently on real machines.
	1) Software engineering is the application of a systematic, disciplined, quantifiable approach to the development, operation, and maintenance of software.

	The Software Process
	Attributes for Comparing Process Models

	The Software Engineering Practice
	The Essence of Practice
	Understand the Problem
	Plan the Solution
	Carry Out the Plan
	Examine the Result
	The Second Principle: KISS (Keep It Simple, Stupid!)
	The Third Principle: Maintain the Vision
	The Fourth Principle: What You Produce, Others Will Consume
	The Fifth Principle: Be Open to the Future
	The Sixth Principle: Plan Ahead for Reuse
	The Seventh principle: Think!

	Software Myths
	PROCESS MODELS
	A GENERIC PROCESS MODEL
	Defining a Framework Activity
	Identifying a Task Set
	Process Patterns

	PROCESS ASSESSMENT AND IMPROVEMENT
	PRESCRIPTIVE PROCESS MODELS
	The Waterfall Model
	Incremental Process Models
	Fig : Incremental Model
	Fig : prototyping paradigm
	Fig : The Spiral Model
	Concurrent Models
	Fig : Concurrent development model

	SPECIALIZED PROCESS MODELS
	Component-Based Development
	The Formal Methods Model
	Draw Backs:
	Aspect-Oriented Software Development

	THE UNIFIED PROCESS
	A Brief History
	Phases of the Unified Process

	PERSONAL AND TEAM PROCESS MODELS
	Personal Software Process (PSP)
	Team Software Process (TSP)

	PROCESS TECHNOLOGY
	PRODUCT AND PROCESS

